多光谱与高光谱工业相机的区别
机器视觉中的光谱成像技术占据着重要位置。在各行各业中应用越来越广泛。多光谱工业相机和高光谱工业相机应运而生。下面我们来看看多光谱和高光谱的区别及如何选择。
多光谱与高光谱相机超越了传统 RGB 相机的局限,它们能够捕捉人眼不可见的波长信息。这项技术通过提供更精细的分析和高维度数据解读,正在农业、医疗和半导体等多个领域发挥着越来越重要的作用。
光谱成像(Spectral Imaging)是一种利用不同波长范围的光线来分析物体光学特性的技术。普通相机拍摄的是人眼可见的整个可见光波段,而光谱成像技术则将光线划分为多个波长段进行感测,从而实现对物质特性的分析与分类。
高光谱相机通过棱镜光谱仪技术检测数百个连续的波长段。光线通过狭缝(slit)限制其位置和大小,随后经过光栅(Grating)进行色散,分散后的光线被传递到传感器上。
以AHS-003VIR为例,可在450nm至1700nm波长范围内采集最多512个波段的光谱数据。
高光谱相机通常一次拍摄仅捕捉分光后的单条线数据,因此为了拍摄所需区域,需要采用Push Broom(推扫式)方式进行拍摄。
Push Broom是高光谱相机中使用的一种线扫描技术,指的是相机或物体移动时,逐行扫描并一次拍摄一条线的数据。
随后随着相机或物体的移动,连续拍摄多条线,最终构建出二维图像及三维数据。
多光谱相机的结构因制造商而异。以AVALDATA的AMS-013VIRLF2为例,其在传感器上添加了滤光片,仅允许部分波长通过。
此外,一次拍摄可获取1200nm、1300nm、1450nm和1600nm四个波段的数据。
每个波段内可拍摄1至32条线,因此一次拍摄最多可采集128条线的数据,同样需要采用Push Broom(推扫式)方式进行拍摄。一次拍摄可获取4个波段的图像。 多光谱相机查看器支持NDVI(归一化植被指数)功能。
多光谱相机与高光谱相机的区别
多光谱(Multispectral)与高光谱(Hyperspectral)相机均可检测可见光及不可见光(红外、紫外等)中的特定波长,但主要区别在于波段数量与连续性。
- 多光谱相机
选择性地检测4个波段的宽波长范围。该方式通过选取最适用的波段实现高效信息提取。因其在传感器上附加滤光片,体积小巧且重量轻,适合特定应用场景。
- 高光谱相机
则可检测多达1680个(视型号而定)连续波段,实现更细致、精准的光谱分析。其优势在于能够识别肉眼或普通相机无法区分的微小物质差异。输出数据为立方体形式,支持ENVI文件格式,并可被支持该格式的第三方软件广泛应用。
主要应用领域
农业:作物健康状态及含水量分析
环境监测:海洋与水质分析,森林监控
医疗与生物分析:皮肤诊断,血流监测
食品质量检测:水果成熟度、肉类新鲜度检测
犯罪相关:数字取证。
短波红外与紫外线不同,属于无损检测范围,因此可以在不损伤被测对象的情况下进行拍摄。
正因如此,光谱成像技术非常适合用于敏感样品或高价值产品的检测。
近年来,光谱成像技术在机器视觉领域越来越受到关注。高光谱相机在自动化检测、质量管理、回收分类、医疗诊断等多个领域的实际应用案例不断增加。 该技术能够捕捉到肉眼或普通相机难以察觉的微小差异,在精密分析和自动化检测中发挥了重要作用。
- RK3588摄像头配置:搞懂CPhy与DPhy的区别,再也不踩坑!
- NETSOL MRAM芯片在工业机械中的数据储存
- 高压开关柜里的光速杀手:弧光保护装置为何能成为最后防线?
- UPS电源供电方式详解:3大核心类型+工作原理,一看就懂
- 无需编程,三步即连——耐达讯自动化Profibus光纤链路模块重新定义配置效率
- 四探针测试:铜浆料的配方和工艺对电阻率的影响
- 卫星通信引爆增长神话:净利暴增超40倍!射频企业涌入押注
- PCB Gerber文件如何导出
- 笔记本用散热硅脂好还是变相偏好?该如何选择?
- 2026开放原子校源行师资培训暨全国开源鸿蒙技术应用开发寒假师资培训(湖南站)圆满落幕
- 奇异摩尔ODCC 2026超节点大会精彩回顾
- 6TOPS算力到底够不够做工业视觉?一篇讲清摄像头路数、模型选择与BL450实战
- NVIDIA Cosmos世界基础模型如何塑造机器人未来
- 贴片电阻选型关键参数解析
- 客户案例分享 | 光伏“追光神器”的神助攻:LP20系列工业连接器解析
- 2025年度深圳市集成电路产业总结大会暨深圳市半导体行业协会第八届第三次会员大会圆满举办